DOI: 10.1002/adsc.200700039

## Metal Triflate-Catalyzed Regio- and Stereoselective Friedel— Crafts Alkenylation of Arenes with Alkynes in an Ionic Liquid: Scope and Mechanism

Mi Young Yoon,<sup>a</sup> Jin Hong Kim,<sup>a</sup> Doo Seoung Choi,<sup>a</sup> Ueon Sang Shin,<sup>a</sup> Jin Yong Lee,<sup>a</sup> and Choong Eui Song<sup>a,\*</sup>

<sup>a</sup> Institute of Basic Science, Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon City, Gyeonggi-do, 440-746, Korea Phone: (+82)-31-290-7064; fax: (+82)-31-290-7075; e-mail: s1673@skku.edu

Received: January 23, 2007

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

**Abstract:** In the metal triflate-catalyzed hydroarylation of alkynes, employing an ionic liquid dramatically enhanced the catalytic activities, resulting in broadening the scope of substrates (arenes and alkynes). In some cases, even reactions that were not possible in conventional organic solvents proceeded smoothly in ionic liquids. Moreover, the ionic liquid phase containing catalyst could be readily recovered by simple decantation of the organic layer after reaction and reused for the following runs without any

significant loss of activity. Mechanistic studies including <sup>13</sup>C NMR analysis of reaction intermediates and isotope experiments confirmed for the first time that this type of reaction proceeds via vinyl cationic intermediates.

**Keywords:** enhanced Lewis acidity; Friedel–Crafts alkenylation; hydroarylation; ionic liquids containing non-coordinating anions; vinyl cation intermediates

#### Introduction

The hydroarylation of alkynes (also known as alkenylation of arenes)<sup>[1]</sup> catalyzed by transition metal complexes, thereby affording styrene derivatives, has received much attention because this approach is, in principle, simpler than those based on Heck reactions, [2] cross-coupling reactions and olefin cross-metathesis reactions. Intramolecular hydroarylation is also of particular interest, since valuable carbo- and heterocycles can be readily obtained.<sup>[1]</sup> Depending on the type of interaction between the metal and the arene or the triple bond, the hydroarylation of alkynes proceeds either via σ-aryl-metal species (see 2 in Scheme 1 below) generated through electrophilic metallation of arenes with metal cationic species 1 (path a in Scheme 1) or via alkenyl cation intermediates 3 formed by Lewis acid activation of alkynes (path b in Scheme 1).<sup>[1]</sup>

For example, in the hydroarylation of alkynes catalyzed by cationic complexes of Pd(II) and Pt(II), σ-aryl-metal species **2** were proposed as intermediates by Fujiwara et al.<sup>[5,6]</sup> Related mechanistic results with Au(III) catalysts were also reported by He.<sup>[7a]</sup> Al-

though this type of hydroarylation of alkynes proceed in a highly regio- and stereoselective manner, the use of expensive metals [Pd(II), Pt(II), Au(III)] and the limited scope of the substrates have restricted their widespread use. Yields vary widely according to the nature of the arene and alkynes. Acceptable yields are obtained only with highly electron-rich arenes (usually having more than two electron-donating substituents), due to the characteristics of electrophilic metallation of aromatic C-H bond. Less activated arenes than xylene generally gave very poor yields. [5,7] Moreover, internal alkynes showed almost no reactivity with an Au catalyst.[7b] On the other hand, the Friedel-Crafts-type hydroarylation of alkynes (i.e., alkenylations of arenes with alkynes) which proceeds via alkenyl cation intermediate 3 followed by electrophilic attack to the arene can be promoted by Lewis acids. However, the major drawback of this Friedel-Crafts alkenylation is the oligomerization of the alkyne due to the instability of vinyl cationic intermediates 3.[8] The well known Lewis acid metal chlorides such as ZrCl<sub>4</sub> and AlCl<sub>3</sub> produced the desired alkenylated products, but with extremely low yields [e.g., 1% and 6% yields of 1-phenyl-1-(p-xylyl)ethene



Scheme 1. Two possible mechanisms for metal-catalyzed hydroarylation of alkynes.

for the reaction of p-xylene with phenylacetylene using ZrCl<sub>4</sub> and AlCl<sub>3</sub> at 85 °C, respectively]. [9] In contrast to the well established Friedel-Crafts alkylations of arenes with olefins, [10] the corresponding alkenylations with alkynes therefore still remained to be solved. In 2000, Tsuchimoto et al. made a breakthrough in this type of reaction with the discovery that some metal triflates  $[M(OTf)_n; M=Sc, Zr, In]$ can catalyze the alkenylation of arenes with internal alkynes as well as terminal alkynes through an alkenyl cationic intermediate. [9] However, the catalytic activity of these metal triflates is far too low for preparative use, which narrows the scope of the reaction. For example, the reaction of benzene and phenylacetylene in the presence of 10 mol% of Sc(OTf)<sub>3</sub> at 85°C requires 186 h to give a 73% yield of 1,1-diphenylethene. [9] Moreover, Sc(OTf)<sub>3</sub> was totally inactive for electron-deficient alkynes such as p-CF<sub>3</sub>-phenylacetylene and p-Cl-phenylacetylene. Therefore, a practical and more efficient catalyst system for the hydroarylation of alkynes is highly desirable.

Room temperature ionic liquids (RTILs) are now regarded as eco-friendly alternatives to volatile organic solvents in chemical processes.<sup>[11]</sup> During our extensive investigations<sup>[12]</sup> on the utilization of RTILs in various catalytic reactions, we found that switching from an organic solvent to an ionic liquid for some Sc(OTf)<sub>3</sub>-catalyzed reactions markedly improved the catalytic performance (e.g., increased reaction rates, selectivity improvements, etc.) as well as facile catalyst recycling. For example, in our earlier study we

found that the Sc(OTf)<sub>3</sub>-catalyzed Friedel-Crafts alkylation of aromatic compounds with alkenes is dramatically accelerated in the presence of ionic liquids containing very weakly coordinating anions such as  $[bmim][SbF_6]$  (5a) or  $[bmim][PF_6]$  (5b) (bmim=1butyl-3-methylimidazolium).[12a] We also found that the catalytic activity in Sc(OTf)<sub>3</sub>-catalyzed Diels-Alder reactions was up to 100 times higher in the presence of ionic liquids such as 5a or 5b than that observed in conventional organic solvents.[12c] These results encouraged us to investigate the metal triflatecatalyzed Friedel-Crafts alkenylation of aromatics with alkynes in ionic liquids. Quite recently, we reported our preliminary results that ionic liquids such as 5a or 5b also enhanced catalytic activity dramatically in this reaction.[12h] Therefore, the aim of the present study was to optimize our protocol, investigate the substrate scope, and elucidate the plausible reaction mechanism.

We report herein that, in the metal triflate-catalyzed Friedel-Crafts alkenylation of arenes with alkynes, employing an ionic liquid can not only facilitate catalyst recycling but also dramatically enhance the catalytic activities, resulting in a broadening the scope of substrates. Moreover, it was confirmed for the first time by mechanistic studies that this type of reaction proceeds *via* vinyl cationic intermediates (path b in Scheme 1).

## **Results and Discussion**

#### **Effects of Ionic Liquids on Catalytic Activity**

To investigate the effects of ionic liquids (Figure 1) on the catalytic activity of metal triflate in the Friedel– Crafts alkenylation reaction, we first examined the reaction between benzene and 1-phenyl-1-propyne

$$\begin{bmatrix} -N & + \\ + & - \\ \end{bmatrix} \begin{bmatrix} x^{-} \\ \end{bmatrix}$$
[bmim][X]
$$(X = SbF_{6} (5a), PF_{6} (5b), BF_{4} (5c), OTf (5d))$$

Figure 1. The ionic liquids used in this study. [13]

under various conditions. The results are summarized in Table 1. The alkenylation of benzene with 1-phenyl-1-propyne in the presence of 10 mol% of  $Sc(OTf)_3$  without an ionic liquid proceeded very slowly, with a product yield of only 27% after 96 h (entry 1 in Table 1). Moreover, this long reaction time resulted in increased undesired side product formation. On the other hand, when the reaction was carried out in the imidazolium salts  $\mathbf{5a}$ ,  $\mathbf{b}$ , which contain very weakly coordinating anions such as  $SbF_6^-$  or

**Table 1.** Friedel–Crafts alkenylation of benzene with 1-phenyl-1-propyne. [a]

$$+ Ph \longrightarrow CH_3 \xrightarrow{\text{metal triflate}} CH_3 \xrightarrow{\text{[bmim][X] (5)}} CH_3$$

| Entry     | Catalyst                   | Ionic  | Time | Yield              |
|-----------|----------------------------|--------|------|--------------------|
| •         | (equivs.)                  | Liquid | [h]  | [%] <sup>[b]</sup> |
| 1         | Sc(OTf) <sub>3</sub> (0.1) | none   | 96   | 27                 |
| 2         | $Sc(OTf)_3$ (0.1)          | 5a     | 4    | 91                 |
| 3         | $Sc(OTf)_3(0.1)$           | 5b     | 4    | 90                 |
| 4         | $Sc(OTf)_3$ (0.1)          | 5c     | 4    | < 5                |
| 5         | $Sc(OTf)_3(0.1)$           | 5d     | 4    | < 5                |
| $6^{[9]}$ | $In(OTf)_3$ (0.1)          | none   | 16   | 63                 |
| 7         | $In(OTf)_3(0.1)$           | 5a     | 2.5  | 81                 |
| 8         | $In(OTf)_3 (0.05)$         | 5a     | 6    | 94                 |
| 9         | $In(OTf)_3$ (0.025)        | 5a     | 24   | 91                 |
| 10        | $Hf(OTf)_4(0.1)$           | 5a     | 1    | 90                 |
| 11        | $Hf(OTf)_4 (0.05)$         | 5a     | 5    | 91                 |
| 12        | $Hf(OTf)_4 (0.025)$        | 5a     | 9    | 85                 |
| 13        | $Y(OTf)_3(0.1)$            | 5a     | 2    | 80                 |
| 14        | $Yb(OTf)_{3}(0.1)$         | 5a     | 4    | 81                 |
| 15        | $Lu(OTf)_3(0.1)$           | 5a     | 4    | 94                 |

<sup>[</sup>a] All reactions were carried out at 85 °C using 1-phenyl-1-propyne (1 mmol), benzene (6 mL) and ionic liquid 5 (1 mL) in the presence of the metal triflate as a catalyst.

PF<sub>6</sub><sup>-</sup>, the catalytic activity of Sc(OTf)<sub>3</sub> was dramatically enhanced, and thus, the reaction was completed within 4 h and afforded the desired product, 1,1-diphenyl-1-propene (6), in excellent yields (91 or 90%, respectively, entries 2 and 3).<sup>[14]</sup> In sharp contrast to these results, however, in the hydrophilic ionic liquids,  $[bmim][BF_4]$  (**5c**) or [bmim][OTf] (**5d**), only tiny amounts of the alkenylated product were obtained after 4 h (<5% yield) (entries 4 and 5 in Table 1). A similar anion effect of ionic liquids on catalyst activity was observed by us in the Sc(OTf)<sub>3</sub>-catalyzed Friedel-Crafts alkylation reactions.<sup>[12a]</sup> The origin of this significant effect of ILs, in particular the strong influence of anion-type on catalytic activity, might be attributed by anion exchange of metal triflate with weakly coordinating anions such as  $PF_6^-$  or  $SbF_6^-$  of ILs. By anion exchange, ILs having very weakly coordinating anions such as PF<sub>6</sub> or SbF<sub>6</sub> may activate the metal triflate catalyst, generating in situ a more Lewis acidic catalyst.[15]

Next, we examined the catalytic activity of various metal triflates in the presence of 5a. Among the various metal triflates investigated, indium triflate, hafnium triflate and yttrium triflate, in particular, were found to exhibit higher activity than scandium triflate, and thus, the reaction was completed within 2.5 h, 1 h and 2 h, respectively (entries 7, 10 and 13 in Table 1). Even in the presence of reduced amounts of these metal triflates (5 mol % and 2.5 mol %), the reactions proceeded smoothly with excellent yields (entries 8, 9, 11 and 12). Ytterbium triflate and lutetium triflate also exhibited similar catalytic activity to that of scandium triflate (entries 14 and 15). However, the catalytic activities of other metal triflates investigated in this study  $[Ag(OTf) (4\%), Cu(OTf)_2 (27\%),$ Mg(OTf)<sub>2</sub> (21%), Zn(OTf)<sub>2</sub> (2%), Sn(OTf)<sub>2</sub> (69%), La(OTf)<sub>3</sub> (62%), Pr(OTf)<sub>3</sub> (19%), Nd(OTf)<sub>3</sub> (37%), Sm(OTf)<sub>3</sub> (15%), Eu(OTf)<sub>3</sub> (16%), Gd(OTf)<sub>3</sub> (23%), Tb(OTf)<sub>3</sub> (34%), Dy(OTf)<sub>3</sub> (28%), Ho(OTf)<sub>3</sub> (30%), Er(OTf)<sub>3</sub> (40%), Tm(OTf)<sub>3</sub> (22%)] were much lower than those of Sc(OTf)<sub>3</sub>, In(OTf)<sub>3</sub>, Hf(OTf)<sub>4</sub>, Y(OTf)<sub>3</sub>, Yb(OTf)<sub>3</sub> and Lu(OTf)<sub>3</sub>. This catalytic effect profile of various metal triflates is nearly consistent with the relative Lewis acidity scale evaluated by the use of tandem mass spectrometry<sup>[16]</sup> and observed in other metal triflate-catalyzed reactions.[17] The difference of catalytic activity between various metal triflates can be attributed to their charge density, i.e., the ionic radii of the metal cations, M<sup>n+</sup>.[18]

## Hydroarylation of Terminal Aryl-substituted Alkynes

To survey the scope and generality of our method, we first carried out a series of Friedel-Crafts alkenylations of arenes with several terminal alkynes in ionic liquid **5a**. As shown from the results in Table 2, all re-

<sup>[</sup>b] Isolated yield based on 1-phenyl-1-propyne.

Table 2. Metal triflate-catalyzed Friedel-Crafts alkenylation of arenes with terminal alkynes in 5a. [a]

Ar-H + R 
$$\stackrel{\text{metal triflate}}{=}$$
 H  $\stackrel{\text{metal triflate}}{=}$  Ar  $\stackrel{\text{R}}{=}$  H  $\stackrel{\text{H}}{=}$  Or  $\stackrel{\text{H}}{=}$  H  $\stackrel{\text{H}}{=}$   $\stackrel{\text{H}}{$ 

| Entry             | Ar-H               | Alkynes (R)                                      | Catalyst             | Time   | Product | Yield <sup>[b]</sup> | $(E)/(Z)^{[c]}$ |  |
|-------------------|--------------------|--------------------------------------------------|----------------------|--------|---------|----------------------|-----------------|--|
| 1                 | benzene            | Ph                                               | Sc(OTf) <sub>3</sub> | 4 h    | 7       | 70 %                 | -               |  |
| 2                 | <i>p</i> -xylene   | Ph                                               | $Sc(OTf)_3$          | 4 h    | 8       | 70 %                 | -               |  |
| 3                 | <i>p</i> -xylene   | Ph                                               | $In(OTf)_3$          | 3 h    | 8       | 80 %                 | -               |  |
| 4                 | <i>p</i> -xylene   | Ph                                               | $Hf(OTf)_4$          | 3 h    | 8       | 85 %                 | _               |  |
| 5                 | mesitylene         | ferrocenyl                                       | $Hf(OTf)_4$          | 5 min  | 9       | 78 %                 | -               |  |
| $6^{[d]}$         | pentamethylbenzene | ferrocenyl                                       | Hf(OTf) <sub>4</sub> | 5 min  | 10      | 65 %                 | _               |  |
| 7                 | <i>p</i> -xylene   | p-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | Sc(OTf) <sub>3</sub> | 22 h   | 11      | 73 %                 | -               |  |
| 8                 | <i>p</i> -xylene   | p-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | $In(OTf)_3$          | 5 h    | 11      | 78%                  | _               |  |
| 9                 | <i>p</i> -xylene   | p-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | Hf(OTf)₄             | 5 h    | 11      | 68%                  | _               |  |
| 10                | <i>p</i> -xylene   | p-Cl-C <sub>6</sub> H <sub>4</sub>               | $Sc(OTf)_3$          | 12 h   | 12      | 63 %                 | _               |  |
| 11                | <i>p</i> -xylene   | p-Cl-C <sub>6</sub> H <sub>4</sub>               | $Hf(OTf)_4$          | 4 h    | 12      | 70%                  | _               |  |
| 12                | mesitylene         | COMe                                             | $Hf(OTf)_4$          | 10 min | 13      | 73 %                 | > 99/1          |  |
| 13 <sup>[d]</sup> | pentamethylbenzene | COMe                                             | $Hf(OTf)_4$          | 15 min | 14      | 76%                  | >99/1           |  |

<sup>[</sup>a] Unless otherwise indicated, all reactions were carried out using alkyne (1 mmol), arene (6 mL) and ionic liquid **5a** (1 mL) in the presence of metal triflate (10 mol % based on alkyne) as a catalyst at 85 °C.

actions with aryl-substituted alkynes proceeded much faster than those without using an ionic liquid<sup>[9]</sup> and, thus, were completed within a few minutes to a few hours, affording the corresponding alkenylated products in good to excellent yields with perfect regioselectivity in favor of the Markovnikov-type 1,1-product (entries 1–11). For example, in the presence of ionic liquid 5a, the reaction of benzene with phenylacetylene was completed within 4 h affording the desired product, 1,1-diphenylethene (entry 1). On the other hand, in a common organic solvent such as CH<sub>3</sub>NO<sub>2</sub>, a much longer reaction time (186 h) was required to complete the reaction.<sup>[9]</sup> Under strict anaerobic conditions, ferrocenylacetylene could be also hydroarylated within 5 min, affording 9 and 10 in good yields (entries 5 and 6). In all cases of entries 1-11, no other regioisomer was observed by analysis of the reaction mixture with GC-MS and <sup>1</sup>H NMR. The perfect regiochemistry can be attributed to the conjugative stabilizing effect of the  $\alpha$ -aryl group on the vinyl cation intermediate 3. Notably, Sc(OTf)<sub>3</sub> In(OTf)<sub>3</sub> and Hf(OTf)<sub>4</sub> effectively catalyzed the alkenylation of the electron-deficient alkynes such as p-CF<sub>3</sub>-phenylacetylene and p-Cl-phenylacetylene, which were totally inactive without ionic liquid (entries 7–11).[9] In these reactions, In(OTf)<sub>3</sub> and Hf(OTf)<sub>4</sub> exhibited higher catalytic activities than those of Sc(OTf)<sub>3</sub> (entries 7 and 10 vs. entries 8, 9 and 11). We also tested the reactions of the terminal alkynes conjugated to an elec-

tron-withdrawing group such as COMe. The reaction of arenes with an alkynone, 3-butyn-2-one, was completed within 15 min, giving exclusively  $\beta$ -aryl-substituted *trans*-alkenes, (*E*)-4-aryl-3-buten-2-ones **13** and **14** (entries 12 and 13 in Table 1). No other regio- or stereoisomers were observed in the reaction mixture. The regiochemistry of this reaction is dominated by the electronic effect in a type of Lewis acid-catalyzed Michael addition. The possible reasons for the (*E*)-selectivity of the reaction will be discussed in the latter part of this paper.

### **Hydroarylation of Internal Alkynes**

The scope of our method was further explored by the reactions of electron-rich and electron-poor arenes with various internal alkynes using 10 mol% of Sc-(OTf)<sub>3</sub>, In(OTf)<sub>3</sub> or Hf(OTf)<sub>4</sub> in the presence of **5a**. As shown in Table 3, in the presence of an ionic liquid, all reactions proceeded much faster than those without using an ionic liquid, and were highly regioand stereoselective, giving the corresponding alkenylation products in good to excellent yields with high (Z)-selectivity. The regio- and stereochemistries of all products were assigned by comparison with <sup>1</sup>H NMR spectroscopic data from the literature. [5,7,19] It should be here noted that, as mentioned previously, when using cationic Pd and Pt catalysts, only the electron-

<sup>[</sup>b] Isolated yields based on the alkyne.

<sup>[</sup>c] (E)/(Z) ratios were determined by <sup>1</sup>H NMR spectroscopy.

<sup>[</sup>d] One equivalent of solid arene based on alkyne (1 mmol) and 4 mL of 1,2-dichloroethane as a co-solvent were used.

Table 3. Metal triflate-catalyzed Friedel-Crafts alkenylation of arenes with internal alkynes in 5a. [a]

Ar-H + 
$$R^1$$
— $R^2$  metal triflate (10 mol %)  $R^1$  H ionic liquid **5a**, 85 °C  $A_\Gamma$   $R^2$ 

| Entry      | Ar-H               | Alkyn<br>R¹ | ne R <sup>2</sup>  | Catalyst             | Time   | Product | Yield <sup>[b]</sup> | $(E)/(Z)^{[c]}$ |
|------------|--------------------|-------------|--------------------|----------------------|--------|---------|----------------------|-----------------|
| 1          | benzene            | Ph          | Me                 | Sc(OTf) <sub>3</sub> | 4 h    | 6       | 91%                  | -               |
| 2          | benzene            | Ph          | Ph                 | $Sc(OTf)_3$          | 2 h    | 15      | 79%                  | -               |
| 3          | benzene            | Ph          | Ph                 | $In(OTf)_3$          | 2 h    | 15      | 82 %                 | -               |
| 4          | benzene            | Ph          | Ph                 | $Hf(OTf)_4$          | 1 h    | 15      | 92%                  | -               |
| 5          | benzene            | Ph          | $CO_2Et$           | $Hf(OTf)_4$          | 22 h   | 16      | 89 %                 | -               |
| 6          | <i>p</i> -xylene   | Ph          | Me                 | $Sc(OTf)_3$          | 4 h    | 17      | 96%                  | 4/96            |
| 7          | <i>p</i> -xylene   | Ph          | Ph                 | $Sc(OTf)_3$          | 4 h    | 18      | 80%                  | 12/88           |
| 8          | <i>p</i> -xylene   | Ph          | $CO_2Et$           | $Hf(OTf)_4$          | 10 h   | 19      | 70%                  | 13/87           |
| 9          | mesitylene         | Ph          | Me                 | $Hf(OTf)_4$          | 1 h    | 20      | 92%                  | 1/99            |
| 10         | mesitylene         | Ph          | Ph                 | $Hf(OTf)_4$          | 1.5 h  | 21      | 90%                  | 1/99            |
| 11         | mesitylene         | Ph          | COMe               | $Hf(OTf)_4$          | 30 min | 22      | 72%                  | 1/99            |
| 12         | mesitylene         | Ph          | $CO_2Et$           | $Hf(OTf)_4$          | 13 h   | 23      | 72 %                 | 1/99            |
| $13^{[d]}$ | pentamethylbenzene | Ph          | Me                 | $Hf(OTf)_4$          | 15 min | 24      | 81 %                 | 1/99            |
| $14^{[d]}$ | pentamethylbenzene | Ph          | Ph                 | $Hf(OTf)_4$          | 1 h    | 25      | 77 %                 | 1/99            |
| $15^{[d]}$ | pentamethylbenzene | Ph          | COMe               | $Hf(OTf)_4$          | 12 h   | 26      | 67%                  | 1/99            |
| $16^{[d]}$ | pentamethylbenzene | Ph          | CO <sub>2</sub> Et | $Hf(OTf)_4$          | 29 h   | 27      | 70%                  | 10/90           |
| $17^{[d]}$ | naphthalene        | Ph          | Me                 | $Hf(OTf)_4$          | 10 min | 28      | 92 % <sup>[e]</sup>  | n.d.            |
| 18         | chlorobenzene      | Ph          | Me                 | $In(OTf)_3$          | 1 h    | 29      | 38 % <sup>[f]</sup>  | n.d.            |
| 19         | chlorobenzene      | Ph          | Ph                 | $Sc(OTf)_3$          | 6 h    | 30      | $44\%^{[f]}$         | n.d.            |

<sup>&</sup>lt;sup>[a]</sup> Unless otherwise indicated, all reactions were carried out using alkyne (1 mmol), arene (6 mL) and ionic liquid **5a** (1 mL) in the presence of 10 mol% metal triflates as catalyst at 85 °C.

rich arenes (usually having more than two electrondonating substituents) underwent the reactions with internal alkynes.<sup>[5]</sup> Moreover, Au catalysts cannot catalyze the reaction with internal alkynes.<sup>[7b]</sup> In contrast to these results, our reaction recipe could be more widely applicable even for arenes having electronwithdrawing groups. For example, the reactions of chlorobenzene with 1-phenyl-1-propyne or diphenylacetylene using Sc(OTf)<sub>3</sub> (10 mol%) in [bmim][SbF<sub>6</sub>] proceeded smoothly and, thus, were completed within a few hours, affording the corresponding products as a mixture of o-, m- and p-regioisomers in moderate yields (entries 18 and 19). The reaction of arenes with the alkynes conjugated to an electron-withdrawing group such as COMe and CO<sub>2</sub>Et in the presence of Hf(OTf)<sub>4</sub> also proceeded smoothly in ionic liquid 5a (entries 5, 8, 11, 12, 15 and 16), whereas only <5%conversion was observed without [bmim][SbF<sub>6</sub>] (5a).

## **Intramolecular Hydroarylation**

Finally, our protocol has been further extended to intramolecular hydroarylation (Table 4). The intramolecular reaction of aryl phenylpropiolates 31 or 35 catalyzed by Hf(OTf)<sub>4</sub> (10 mol %) in a mixture of 5a and methylcyclohexane at 85°C for 9-10 h proceeded regioselectively, affording the 4-phenylcoumarins 32 or 36, respectively, in good yields. Surprisingly, the reaction of aryl 2-butynoate 33 was also successfully performed to afford the corresponding coumarin 34 in excellent yield. Due to the lower stabilizing effect of the alkyl group compared to the phenyl group on the vinyl cation intermediate, alkyl-substituted alkynes usually underwent self-oligomerization rather than the desired alkenylation reaction. The intramolecular alkenvlation allowed us also to synthesize 2(1H)-quinolinones 38 or 40 from the corresponding arylamides of phenylpropiolic acid 37 or 39 in good yields.

<sup>[</sup>b] Isolated yield based on the alkyne.

<sup>[</sup>c] (E)/(Z) ratios were determined by <sup>1</sup>H NMR spectroscopy.

<sup>[</sup>d] 1 equivalent of solid arene based on alkyne (1 mmol) and 4 mL of 1,2-dichloroethane as a co-solvent were used.

The reaction gave an inseparable mixture of 1-naphthyl (major isomer) and 2-naphthyl regioisomers, including the corresponding (E)/(Z) isomers. The isomer ratio determined by GC-MS analysis was 75/19/4/1 (entry 17).

The reaction gave an inseparable mixture of *ortho* and *para* regioisomers, including the corresponding (E)/(Z) isomers. The isomer ratios determined by GC-MS analysis are as follows: 11/15/31/39 (entry 18) and 8/18/34/40 (entry 19).

**Table 4.** Metal triflate-catalyzed intramolecular Friedel–Crafts alkenylation in **5a**. [a]

| Х     | [bmim][SbF <sub>6</sub> ] (5<br>R | <b>5a</b> )/m<br>5 °C | , 9 h X               |    | R                           |
|-------|-----------------------------------|-----------------------|-----------------------|----|-----------------------------|
| Entry | Substrate                         |                       | Product               |    | Yield<br>(%) <sup>[b]</sup> |
| 1     | O O O                             | 31                    | O O O Ph              | 32 | 51                          |
| 2     | O CH <sub>3</sub>                 | 33                    | O O O CH <sub>3</sub> | 34 | 89                          |
| 3     | O Ph                              | 35                    | OPh                   | 36 | 55                          |
| 4     | MeO H N O OMe Ph                  | 37                    | MeO H O OMe Ph        | 38 | 72                          |
| 5     | O H O Ph                          | 39                    | O H O Ph              | 40 | 72                          |

All reactions were carried out at 85 °C using the substrate (1 mmol), methylcyclohexane (6 mL) and ionic liquid 5a (1 mL) in the presence of 10 mol % of Hf(OTf)<sub>4</sub> as a catalyst.

[b] Isolated yield.

## **Catalyst Recycling Experiment**

In order to test the immobilization effect of ionic liquid on the catalyst, we also performed the following recycling experiments. After completion of the reaction of mesitylene with 1-phenyl-1-propyne, when the reaction mixture was cooled to -40 °C, the ionic

liquid phase (lower layer) containing the Sc catalyst remained as a solid. The product phase (upper layer) was then simply separated by decantation (i.e., by "pouring off" the organic products). Interestingly, the recovered ionic liquid phase containing the Sc catalyst exhibited nearly indefinite stability under the reaction conditions which allowed for its repeated recycling. Thus, the catalyst was reused eight times without any significant loss of activity (Table 5).

## Computational Calculation of the Relative Energies of the (E)/(Z) Stereoisomers

In their previous study, [5] Fujiwara et al. assigned the (Z)-isomers of trisubstituted alkenes obtained in this work as the kinetic product. Without consideration for structural details, one may expect the (Z)-configuration to be energetically more disfavored than the (E)-configuration because of the bulkier groups on the same side of the double bond. However, our and Tsuchimoto's[9] experimental data signify that the (Z)isomers are the thermodynamically rather than the kinetically controlled products. In agreement with the observation of Tsuchimoto et al., [9] we also observed that at the initial stage of the reaction both stereoisomers exist in the reaction mixture, whereas (Z)-isomers were obtained predominantly as the main products at the end of the reaction. To elucidate the aforementioned conflict, we carried out ab initio calculations for (E)/(Z)-isomers of 1-phenyl-1-(p-xylyl)propene (17), 1,2-diphenyl-1-(p-xylyl)ethene (18), 1pentamethylphenyl-1-phenylpropene (24) and 1-pentamethylphenyl-1,2-diphenylpropene (25) as representatives at the levels of density functional theory (DFT) and Möller-Plesset second order perturbation (MP2) theory with the 6-31G\* basis set using a suite of the Gaussian 03 program. [20] It should be noted from the calculated structures that the steric effect would be negligible even in the case of highly bulky compounds 24 and 25 because it was found that for all the compounds calculated the (Z)-isomers are more stable than the (E)-isomers. The relative energies of the (E)-isomers with respect to the corresponding (Z)-isomers are 1.12, 1.27, 2.19 and 2.97 kcal

**Table 5.** Catalyst recycling experiment.

| Run       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-----------|----|----|----|----|----|----|----|----|
| Yield [%] | 91 | 90 | 92 | 90 | 90 | 94 | 93 | 90 |

mol<sup>-1</sup> for **17**, **18**, **24** and **25**, respectively, at the MP2/ 6-31G\* level with zero-point-energy (ZPE) corrections using the vibrational frequencies calculated at the B3LYP/6-31G\* level [for the MP2/6-31G\* optimized structures of (Z)- and (E)-isomers of 17, 18, 24 and 25, see the Supporting Information]. These relative energies give theoretical (E)/(Z) ratios [for example, (E)/(Z) = 13:87, 11:89, 2:98 and 1:99 for **17**, **18**, **24** and 25, respectively], considering the Boltzmann distribution at 300 K, that are in excellent agreement with the experimental (E)/(Z) ratios [for example, (E)/(Z) = 4/96, 12/88, 1/99 and 1:99 for **17**, **18**, **24** and 25, respectively]. The (E)/(Z) ratio can be explained from the C-H···· $\pi$  interactions between the methyl (or phenyl) and aryl groups (p-xylyl or pentamethylphenyl). The C-H···· $\pi$  interactions have been found in a number of complexes involving aromatic moiety.<sup>[21]</sup> For example, in 17, the hydrogen atoms of vinyl-CH<sub>2</sub> interact with the  $\pi$ -electron cloud of the pxylyl group in the (Z)-conformer, while they interacts with the phenyl group in the (E)-isomer. Obviously, an electron-donating substituent at the phenyl strengthens the C-H···· $\pi$  interactions by increasing the  $\pi$ -electron density of the aryl group. Thus, the intramolecular  $C-H\cdots\pi$  interactions are responsible for the preference for the (Z)-isomer over the corresponding (E)-isomer because the steric effect seems to be negligible as noted in the optimized structures. This preference for (Z)-isomer over (E)-isomer can also be explained in 18, 24 and 25 by a similar reasoning. For 18, the aromatic-aromatic interactions are working between two phenyl groups. The preference for the (Z)-isomer is much more pronounced in compounds 24 and 25 than in 17 and 18 because five electron-donating methyl groups at the phenyl moiety enhance the  $\pi$ -electron density significantly. The distance between hydrogen atoms of the methyl (or phenyl) group and the nearest carbon atom of the pxylyl (or pentamethylphenyl) group is about 2.66-2.75 Å, which is in the range of typical  $\pi$ -hydrogen interactions.<sup>[21]</sup> The induction energy should be larger in (Z)-conformers than in their corresponding (E)-isomers, as revealed from the natural bond orbital (NBO) population analysis. The NBO charges of the hydrogen atom of the methyl (or phenyl) of (Z)-isomers are less positive than those of (E)-isomers, indicating that more charge is transferred from  $\pi$ -electron cloud to the methyl hydrogen in the (Z)-isomer than in the (E)-isomer. Therefore, the C-H···· $\pi$  interactions are stronger in the (Z)-isomer than in the (E)isomer, consistent with the relative stability. Our computational results clearly explain that the product ratio of the (E)- and (Z)-isomers is thermodynamically rather than kinetically determined.

#### **Mechanistic Considerations**

#### **Studies on the Reaction Pathway**

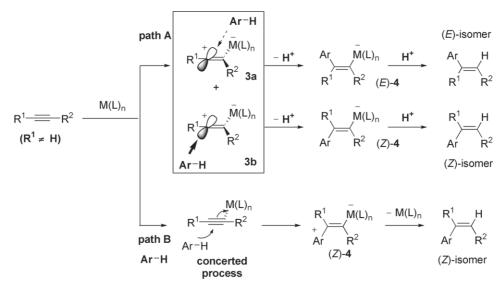
As mentioned in the Introduction, metal triflates have been believed to promote a Friedel-Crafts type hydroarylation (path b in Scheme 1). [9,12h] Nevertheless, to examine the possible involvement of  $\sigma$ -arylmetal complex 2 (path a in Scheme 1), we mixed stoichiometric amounts of Sc(OTf)<sub>3</sub> with pentamethylbenzene in [bmim][SbF<sub>6</sub>] (5a). After stirring this mixture at 85°C for 1 h, the reaction mixture was analyzed by <sup>1</sup>H NMR. No change of the aromatic proton signal in the <sup>1</sup>H NMR spectrum was observed (Scheme 2). On the other hand, it has been reported

Scheme 2.

that the aryl proton immediately disappeared when mixing the Pd(II)<sup>[5]</sup> or Au(III)<sup>[7a]</sup> catalyst with pentamethylbenzene at room temperature. Thus, the possible involvement of σ-aryl-metal species 2 in our reaction can be excluded. Rather, as proposed by Tsuchimoto et al., [9] it is more likely that vinyl cationic intermediates 3 may be involved in our reaction. The ratio of o-, m- and p-regioisomers in the reactions with chlorobenzene (entries 18 and 19 in Table 3) is typical for Friedel-Crafts electrophilic aromatic substitution and this is indirect evidence for the reaction pathway. To gain more direct evidence for the involvement of the vinyl cationic intermediates 3 in our reaction, we next tried to detect the vinyl cationic species 3 in the mixture of diphenylacetylene with Sc- $(OTf)_3$  and  $[bmim][SbF_6]$  (5a) by  $^{13}C$  NMR spectroscopy (Scheme 3). In many reports, [22] vinyl cations,

$$\begin{array}{c} \text{Sc(OTf)}_3 \text{ (1 equiv.)} \\ \hline \\ \text{[bmim][SbF}_6] \text{ (5a, 5 equivs.)} \\ \text{THF-}d_8, -50 \, ^{\circ}\text{C)} \end{array} \qquad \begin{array}{c} \oplus \\ \text{C} = \text{C} \\ \beta \\ \alpha \\ \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{41} \\ \end{array}$$

Scheme 3.


i.e., dicoordinated carbocations in which the positive charge is located at an sp-hybridized carbon of a double bond, have been established as reaction intermediates in the protonation reactions of alkynes.<sup>[23]</sup> Some vinyl cations generated by protonation of alkynes in superacidic media at temperatures below −100 °C have been characterized by NMR spectroscopy.<sup>[24]</sup> In our case, fortunately, the lifetime of vinyl cation 41 generated from diphenylacetylene with 1 equiv. of Sc(OTf)<sub>3</sub> in the presence of ionic liquid 5a (5 equivs.) was sufficient to obtain a <sup>13</sup>C NMR spectrum at -50°C. As shown from the <sup>13</sup>C NMR spectrum (125 MHz) in Figure 2 (a), three characteristic signals for vinyl cationic carbons in 41 (225.6, 218.8 and 176.4 ppm) were observed initially, indicating that at least three vinyl cationic species were present. However, the two peaks at 225.6 and 218.8 ppm disappeared after 1 min, while the cation peak at 176.4 ppm could be observed even after 1 h at -50 °C although its intensity did decrease with time. [25] The possible reason for the existence of several vinvl cationic species can be attributed to the formation of several Sc species by the anionic exchange reaction of Sc(OTf)<sub>3</sub> and ionic liquid 5a. This result provides clear evidence that the reaction proceeds through the Friedel-Crafts alkenylation reaction pathway (path b in Scheme 1).

Generally, two routes (paths A and B in Scheme 4) may be possible for the Friedel–Crafts alkenylation reaction pathway (path b in Scheme 1). Similarly to that observed in the metal triflate-catalyzed reaction without using ionic liquids, [9] both (Z)/(E)-stereoisomers were also observed at the early stage of the reaction of arenes with internal alkynes in the presence



**Figure 2.** (a) Part of  $^{13}$ C NMR spectrum of cation **41** at -50 °C in [D<sub>8</sub>]THF (after 15 seconds); (b) Part of  $^{13}$ C NMR spectrum of diphenylacethylene.

of ionic liquids. This result, together with the aforementioned <sup>13</sup>C NMR analysis of the carbocation **41**, strongly indicates that the reaction proceeds not through a concerted process (path B in Scheme 4) but *via* vinyl cationic intermediates **3** (path A in Scheme 4). As already proposed by Tsuchimoto et al., <sup>[9]</sup> if the reaction proceeds through a concerted mechanism (i.e., the simultaneous activation of an



**Scheme 4.** The possible two routes (paths A and B) for the Friedel–Crafts alkenylation reaction with  $Sc(OTf)_3$  and [bmim]  $[SbF_6]$  (5a).

alkyne by a metal triflate and the attack of an arene to the activated alkyne), an arene attacks the alkyne stereoselectively from the side opposite to the metal triflate, consequently giving the (Z)-isomer as the sole product. On the other hand, in path A, the arene attack, which initially formed vinyl cationic intermediates 3a and 3b (in Scheme 4) from both sides, affords a mixture of (E)-vinyl-M complex (E)-4 and (Z)vinyl-M complex (Z)-4, which are subsequently transformed by protonation to (E)-isomer and (Z)-isomer, respectively. This reaction pathway (path A in Scheme 4) is strongly supported by the existence of both stereoisomers at the initial stage of the reaction and the predominance of the (Z)-isomer at the end of the reaction. That is, as proposed by Tsuchimoto et al., [9] the reaction at the initial stage proceeds via (E)-vinyl metal intermediate (E)-4 which gives the corresponding (E)-isomer which is then transformed to the thermodynamically favored (Z)-isomer by Lewis acid-catalyzed isomerization (Scheme 5). To prove this, compound 18 with an (E)/(Z)-ratio of 92/ 8<sup>[26]</sup> was heated to 85 °C in the presence of Sc(OTf)<sub>3</sub> and **5a** (Scheme 6). As expected, the initial (E)/(Z)ratio of 92/8 of 18 was changed to 6/94 after 1 h.

In the case of the reactions of arenes with the terminal alkynes conjugated with a carbonyl group such as 3-butyne-2-one, (E)-isomers were obtained as sole products at the end of the reaction (entries 12 and 13 in Table 2). Rather than being due to a change in mechanism, this (E)-selectivity is likely to be due to

Scheme 6. Isomerization experiment of 18.

the isomerization of the initially formed (Z)-isomers under the conditions to the thermodynamically favorable (E)-isomers.

#### **Formation of Vinyl-M Species**

To gain further insights of the mechanism, an isotope experiment was carried out on the reaction of benzene- $d_6$  with an internal alkyne (1-phenyl-1-propyne) in the presence of  $H_2O$  (1 equiv.) and [bmim][SbF<sub>6</sub>] (**5a**) [Eq. (1) in Scheme 7] using Sc(OTf)<sub>3</sub> as catalyst. The <sup>1</sup>H NMR spectrum of **6-d**<sub>5-6</sub> [Figure 3 (a)] showed that around 25% of deuterium atoms and 75% of protons were incorporated into the vinyl part of product **6-d**<sub>5-6</sub>. The GC/MS confirmed the predominant formation of the five-deuterium-incorporated adduct **6-d**<sub>5</sub> (m/z M<sup>+</sup> for **6-d**<sub>5</sub>=199.1, 200.1). Benzene was also reacted with 1-phenyl-1-propyne in the presence of D<sub>2</sub>O (1 equiv.) and [bmim][SbF<sub>6</sub>] (**5a**) [Eq. (2) in Scheme 7]. The incorporation of D (52%) from D<sub>2</sub>O

**Scheme 5.** Lewis acid-catalyzed isomerization to the thermodynamically favored (Z)-isomer.

Scheme 7. Isotope experiments.

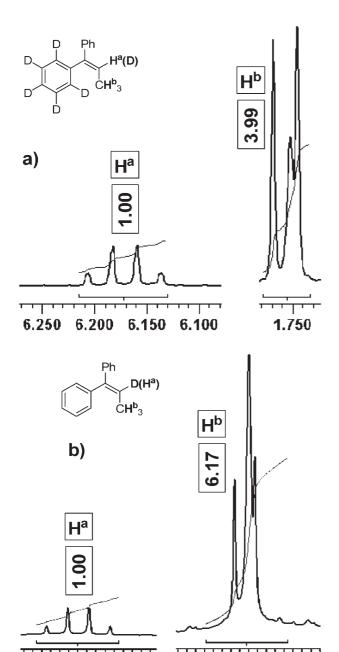



Figure 3. Part of <sup>1</sup>H NMR spectrum of a) 6-d<sub>5-6</sub> and b) 6 $d_{0-1}$ .

6.100

1.800

1.750

1.700

and H (48%) from aromatic substrate into the vinyl part of adduct 6-d<sub>0-1</sub> was observed on the basis of <sup>1</sup>H NMR [Figure 3 (b)] and GC/MS (m/z M<sup>+</sup> for 6- $\mathbf{d_1} = 195.1$ , 196.1) analysis. All these results strongly suggest that the deuterium cation [Eq. (1) in Scheme 7] or proton [Eq. (2) in Scheme 7] originated from the aromatic substrate during the reaction is liberated into the solution before it is incorporated into the final product. These results in combination provide strong evidence for formation of the vinyl-metal complexes 4.

## **Conclusions**

In summary, by employing an ionic liquid, a simple and highly regio- and/or stereoselective method for metal triflate-catalyzed, inter- and intramolecular Friedel-Crafts alkenylation of a broad spectrum of arenes and alkynes was realized. In some cases, moreover, even those reactions that were not possible in conventional organic solvents proceeded smoothly in ionic liquids. To our knowledge, the protocol described here is the most broad-scoped alkenylation method presented in the literature so far. Moreover, the ionic liquid phase containing catalyst could be readily recovered by simple decantation of the organic layer after reaction and reused for subsequent runs without any significant loss of activity. Mechanistic studies including <sup>13</sup>C NMR analysis of vinyl cations and isotope experiments confirmed for the first time that this type of reaction proceeds via vinyl cationic intermediates.

## **Experimental Section**

#### **General Remarks**

All reactions were performed in an argon atmosphere using standard Schlenk techniques An inert atmosphere is advisable in order to minimize ketone formation and catalyst deactivation.

Chromatographic purification of products was carried out by flash chromatography using Merck silica gel 60 (230-400 mesh). Thin layer chromatography was carried out on Merck silica gel 60F plates. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Varian 300 and Varian 500 spectrometers using Me<sub>4</sub>Si as an internal standard. GC-MS analysis was performed using GC/MSD; Varian 4000. The molecular mechanics calculations were made by using a suite of the Gaussian 03 program.[20]

All metal triflates used in this study were purchased from Aldrich. Ionic liquids 5a-e were purchased from C-Tri Co., Ltd., Korea, http://www.c-tri.co.kr/) and used without further purification. They were spectrometrically pure, nearly chloride-free (<10 ppm) and their water content was < 200 ppm (determined by Karl-Fisher titration). Other organic solvents were dried (CaH2 or Na) and distilled under an argon atmosphere prior to use. All other chemicals were obtained from commercial sources and used without further purification.

Isolated compounds were fully characterized by <sup>1</sup>H, <sup>13</sup>C NMR and GC/MS (For <sup>1</sup>H and <sup>13</sup>C NMR data, see the Supporting Information). The stereochemistry of all adducts was assigned by comparison with literature NMR spectroscopic data.[5,7,19].

## **Typical Procedure for Intermolecular Friedel-Crafts Alkenylations in Ionic Liquid**

Liquid Arenes (benzene): Under an argon atmosphere, 1phenyl-1-propyne (116.1 mg, 1 mmol) was added to a mix-

6.150

6.200

1734

ture of  $Sc(OTf)_3$  (49.2 mg, 0.1 mmol), benzene (6 mL) and [bmim][SbF<sub>6</sub>] (1 mL). Two phases were formed and the mixture was stirred at 85 °C until the disappearance of alkyne, as monitored by TLC or GC-MS (4 h). After cooling to room temperature, the reaction mixture was poured into a saturated aqueous NaCl solution and extracted with ethyl acetate. The organic layer was washed with water, and dried over anhydrous  $Mg_2SO_4$ . The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica (hexane) to give pure 1,1-diphenyl-1-propene (6) as a pale yellow viscous liquid; yield: 177 mg (91%).

**Solid Arenes (pentamethylbenzene):** Under an argon atmosphere, 1-phenyl-1-propyne (116.1 mg, 1 mmol) was added to a mixture of  $Sc(OTf)_3$  (49.2 mg, 0.1 mmol), pentamethylbenzene (148.2 mg, 1 mmol) in dichloroethane (4 mL) and [bmim][SbF<sub>6</sub>] (1 mL). The reaction mixture was stirred at 35 °C until the disappearance of alkyne, as monitored by TLC or GC-MS (15 min). After cooling to room temperature, the reaction mixture was poured into a saturated aqueous NaCl solution and extracted with ethyl acetate. The organic layer was washed with water, and dried over anhydrous  $Mg_2SO_4$ . The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica (hexane) to give pure 1-pentamethylphenyl-1-diphenyl-1-propene (24) as a pale yellow solid; yield: 214.1 mg (81 %).

# Synthesis of Aryl 3-Substituted Propiolates and Alkynamides

Representative procedure for the synthesis of 3-substituted propiolic acid aryl esters: Me<sub>3</sub>N·HCl (258 mg, 2.7 mmol) was added to a stirred solution of phenylpropiolic acid (204.6 mg. 1.4 mmol), phenol (131.7 mg, 1.4 mmol), Et<sub>3</sub>N (414.9 mg, 4.1 mmol), and DMAP (12,2 mg, 0.1 mmol) in CH<sub>3</sub>CN (1.0 mL) at 0-5 °C under an argon atmosphere, and the mixture was stirred for 10 min. To this mixture, a solution of Me<sub>2</sub>NSO<sub>2</sub>Cl (387.7 mg, 2.7 mmol) in MeCN (1.0 mL) was then added and the mixture was maintained at 0-5°C while being stirred for 3 h. Water was added to the mixture, which was extracted with ether. The organic phase was washed with water, dried over anhydrous Na2SO4, and concentrated. The obtained crude product was purified by flash column chromatography (hexane:ether=1:1) to give pure phenyl 3-phenylpropiolate as a white solid; yield: 270 mg (87%).

Representative procedure for the synthesis of phenylpropiolic acid arylamides: Me<sub>3</sub>N·HCl (258 mg, 2.7 mmol) was added to a stirred solution of phenylpropiolic acid (204.6 mg, 1.4 mmol), 3,4,5-trimethoxyaniline (256.5 mg, 1.4 mmol), Et<sub>3</sub>N (414.9 mg, 4.1 mmol), and DMAP (12.2 mg, 0.1 mmol) in CH<sub>3</sub>CN (1.0 mL) at 0–5 °C under an argon atmosphere, and the mixture was stirred for 10 min. To this mixture, a solution of Me<sub>2</sub>NSO<sub>2</sub>Cl (387.7 mg, 2.7 mmol) in MeCN (1.0 mL) was then added and the mixture was maintained at 0–5 °C while being stirred for 3 h. Water was added to the mixture, which was extracted with ethyl acetate. The organic phase was washed with water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The obtained crude product was purified by flash column chromatography (hexane:ethyl ace-

tate=1: 2) to give pure phenyl propiolic acid 3,4,5-trimeth-oxyphenylamide as a yellow solid; yield: 366 mg (84%).

## Typical Procedure for Intramolecular Friedel-Crafts Alkenylations in Ionic Liquid

Under an argon atmosphere, a mixture of  $Hf(OTf)_4$  (77.4 mg, 0.1 mmol), phenyl 3-phenylpropiolate (222.1 mg, 1 mmol), methylcyclohexane (6 mL) and [bmim][SbF<sub>6</sub>] (1 mL) was refluxed for 9 h. After reaction completion, the reaction mixture was cooled to room temperature, all the volatiles were removed under reduced pressure and then the residue was purified by flash column chromatography on silica (hexane:diethyl ether) to give pure 4-phenylcoumarin as a pale yellow solid; yield: 113 mg (51%).

### **Catalyst Recycling Experiment**

Under an argon atmosphere, 1-phenyl-1-propyne (116.1 mg, 1 mmol) was added to a mixture of  $Sc(OTf)_3$  (49.2 mg, 0.1 mmol), mesitylene (6 mL) and [bmim][SbF<sub>6</sub>] (1 mL). Two phases are formed and the mixture was stirred at 85 °C until the disappearence of alkyne as monitored by TLC or GC-MS (1 h). After completion of the reaction, the reaction mixture was cooled to -40 °C. The organic layer (upper phase) was separated simply by decantation to leave the solidified ionic liquid phase containing the catalyst which can be reused for next runs. The further work-up procedure was the same as described above. Yields are given in Table 5.

# Preparation of Vinyl Cations 41 and their <sup>13</sup>C NMR Analysis

In a 5-mm NMR tube, diphenylacetylene (11.1 mg, 0.062 mmol) and  $Sc(OTf)_3$  (30.7 mg, 0.062 mmol) were added under argon atmosphere. To this solid mixture, a solution of [bmim][SbF<sub>6</sub>] (**5a**, 117.1 mg, 0.312 mmol) in dried THF- $d_8$  (0.6 mL) was added dropwise at  $-78\,^{\circ}$ C and sealed. At this temperature, the reaction mixture remained undissolved. Warming this mixture to  $-50\,^{\circ}$ C led to complete dissolution. Thus, at this temperature <sup>13</sup>C NMR spectra of the reaction mixture were measured. Spectra are given in Figure 2.

## **Isomerization Experiment**

A solution of **18** (29.6 mg, 0.104 mmol) with a (E)/(Z)-ratio of 92/8<sup>[26]</sup> in 2 mL of 1,2-dichloroethane was heated for 1 h at 85 °C in the presence of Sc(OTf)<sub>3</sub> (4.9 mg, 0.01 mmol) and **5a** (0.5 mL). After cooling, the reaction mixture was poured into a saturated aqueous NaCl solution and extracted with ethyl acetate. The organic layer was washed with water, and dried over anhydrous Mg<sub>2</sub>SO<sub>4</sub>. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica (hexane). According to <sup>1</sup>H NMR analysis, the initial (E)/(Z) ratio of **18** (92/8) was changed to 6/94.

## **Typical Procedure for Isotope Experiment**

Reaction of benzene- $d_6$  with 1-phenyl-1-propyne in the presence of  $H_2O$  and 5a: Under an argon atmosphere, 1-phenyl-1-propyne (58.0 mg, 0.5 mmol) was added to a mix-

ture of Sc(OTf)<sub>3</sub> (24.6 mg, 0.05 mmol), benzene- $d_6$  (2 mL),  $H_2O$  (9  $\mu L$ , 0.5 mmol) and **5a** (0.5 mL). The mixture was stirred at 85°C for 4 h. Standard work-up gave 6-d<sub>5-6</sub> as a colorless solid; yield: 79 mg (79%) of The <sup>1</sup>H NMR spectrum of 6-d<sub>5-6</sub> showed that the intensities of the vinyl proton (at 6.17 ppm as a quartet) and methyl protons (doublet at 1.76 ppm for  $6-d_5$  and singlet at 1.75 ppm for  $6-d_6$ ) were in a ratio of 1.00: 3.99. The GC/MS confirmed the formation of five-deuterium-incorporated adduct  $6-d_5$  (m/z [M<sup>+</sup>]=199.1, 200.1). These results revealed that 75% of the H from H<sub>2</sub>O and 25% of D from the aromatic substrate were incorporated into vinyl part of product 6-d<sub>5-6</sub>.

Reaction of benzene with 1-phenyl-1-propyne in the presence of D<sub>2</sub>O and 5a: Under an argon atmosphere, 1-phenyl-1-propyne (58.0 mg, 0.5 mmol) was added to a mixture of Sc(OTf)<sub>3</sub> (24.6 mg, 0.05 mmol), benzene (2 mL), D<sub>2</sub>O (9 μL, 0.5 mmol) and 5a (0.5 mL). The mixture was stirred at 85 °C for 4 h. Standard work-up gave 6-d<sub>0-1</sub> as a colorless solid; yield: 68 mg (70%). The  ${}^{1}$ H NMR spectrum of  $6-d_{0-1}$ showed that the intensities of the vinyl proton (at 6.17 ppm as a quartet) and methyl protons (doublet at 1.76 ppm for 6- $\mathbf{d_0}$  and singlet at 1.75 ppm for  $\mathbf{6}$ - $\mathbf{d_1}$ ) were in a ratio of 1.00:6.17. The GC/MS confirmed the formation of five-deuterium-incorporated adduct  $6-\mathbf{d_1}$  (m/z [M<sup>+</sup>]=195.1, 196.1). These results revealed that 52% of the D from D<sub>2</sub>O and 48% of H from the aromatic substrate were incorporated into vinyl part of product  $6-\mathbf{d}_{0-1}$ .

## **Acknowledgements**

This work was supported by a Korea Research Foundation Grant (KRF-2005-005-J11901) funded by MOEHRD, and by grants R01-2006-000-10426-0 (KOSEF) and R11-2005-008-00000-0 (SRC program of MOST/KOSEF).

## References

- [1] For a review, see: C. Nevado, A. M. Echavarren, Synthesis 2005, 167.
- [2] For general references, see: a) A. de Meijere, F. E. Meyer, Angew. Chem. Int. Ed. 1994, 33, 2379; b) I. P. Belteskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009; c) G. T. Crisp, Chem. Soc. Rev. 1998, 27, 427; d) J. T. Link, L. E. Overman, in: Metal-Catalyzed Cross-Coupling Reactions, (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, Chap. 6; e) S. Braese, A. de Meijere, in: Metal-Catalyzed Cross-Coupling Reactions, (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, Chap. 3.
- [3] a) V. Farina, V. Krishnamurthy, W. K. Scott, in: Organic Reactions, Vol. 50, Wiley, New York, 1997; b) P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 32, 4704.
- [4] R. H. Grubbs, Handbook of Metathesis, Wiley-VCH, Weinheim, 2003.
- [5] a) C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara, Science 2000, 287, 1992; b) C. Jia, W. Lu, J. Oyamada, T. Kitamura, K. Matsuda, M. Irie, Y. Fuji-

- wara, J. Am. Chem. Soc. 2000, 122, 7252; c) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633.
- [6] However, it has recently been suggested by Tunge et al. that the Fujiwara hydroarylation occurs rather via typical Friedel-Crafts alkenylation pathway; see: J. A. Tunge, L. N. Foresee, Organometallics 2005, 24, 6440.
- [7] a) Z. Shi, C. He, J. Org. Chem. 2004, 69, 3669; b) M. T. Reetz, K. Sommer, Eur. J. Org. Chem. 2003, 3485.
- [8] a) O. W. Cook, V. J. Chaber, J. Am. Chem. Soc. 1921, 43, 334; b) J. S. Reichert, J. A. Nieuwland, J. Am. Chem. Soc. 1923, 45, 3090; c) J. A. Reilly, J. A. Nieuwland, J. Am. Chem. Soc. 1928, 50, 2564.
- [9] T. Tsuchimoto, T. Maeda, E. Shirakawa, Y. Kawakami, Chem. Commun. 2000, 1573.
- [10] For reviews of Friedel-Crafts alkylation reactions, see: a) Friedel-Crafts and Related Reactions, Vol. II, Part 1, (Ed.: G. A. Olah), Wiley-Interscience, New York, 1964; b) Friedel-Crafts Alkylation Chemistry. A Century of Discovery, (Eds.: R. M. Roberts, A. A. Khalaf), Dekker, New York, 1984; c) G. A. Olah, R. Krishnamurit, G. K. S. Prakash, in: Friedel-Crafts Alkylations in Comprehensive Organic Synthesis, (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991.
- [11] For recent reviews on ionic liquids, see: a) C. E. Song, Ann, Rep. Prog. Chem. Sect. C. 2005, 101, 143; b) C. E. Song, M. Y. Yoon, D. S. Choi, Bull. Korean Chem. Soc., **2005**, 26, 1321; c) C. E. Song, in: Methodologies in Asymmetric Catalysis, (Ed.: S. V. Malhotra), ACS Symposium Series 880, 2004, 145; d) C. E. Song, Chem. Commun. 2004, 1033; e) J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev. 2002, 102, 3667; f) C. Gordon, Appl. Catal. A.: General 2001, 222, 101; g) R. Sheldon, Chem. Commun. 2001, 2399; h) P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772; i) T. Welton, Chem. Rev. 1999, 99, 2071.
- [12] Our recent examples: a) C. E. Song, W. H. Shim, E. J. Roh, J. H. Choi, Chem. Commun. 2000, 1695; b) C. E. Song, E. J. Roh, Chem. Commun. 2000, 837; c) C. E. Song, W. H. Shim, E. J. Roh, S.-g. Lee, J. H. Choi, Chem. Commun. 2001, 1122; d) D. W. Kim, C. E. Song, D. Y. Chi, J. Am. Chem. Soc. 2002, 124, 10278; e) D. W. Kim, C. E. Song, D. Y. Chi, J. Org. Chem. 2003, 68, 4281; f) E. J. Kim, S. Y. Ko, C. E. Song, Helv. Chim. Acta 2003, 86, 894; g) S.-g. Lee, Y. J. Zhang, P. Z. Yu, H. Yoon, C.E. Song, J.H. Choi, J. Hong, Chem. Commun. 2003, 2624; h) C. E. Song, D. Jung, S. Y. Chung, E. J. Roh, S.-g. Lee, Angew. Chem. Int. Ed. **2004**, 43, 6183.
- [13] Ionic liquids **5a–e** were purchased from C-Tri Co., Ltd., Korea, http://www.c-tri.co.kr/). They were spectrometrically pure, nearly chloride-free (<10 ppm) and their water content was <200 ppm (determined by Karl-Fisher titration).
- [14] Recently, Rogers and co-workers reported the instability of the ionic liquids counterion PF<sub>6</sub><sup>-</sup> towards moisture, which resulted in hydrolysis and the formation of HF, see: R. P. Swatloski, J. D. Holbrey, R. D. Rogers, Green Chem. 2003, 5, 361. Therefore, to examine the possible catalytic effect of HF on this reaction, we also carried out the reaction only in [bmim][SbF<sub>6</sub>] or in a mixture of [bmim][SbF<sub>6</sub>]and water (1:1, v/v), without

1736

- any metal triflate catalyst. However, no reaction occurred at all.
- [15] Manuscript in review.
- [16] H. Tsuruta, K. Yamaguchi, T. Imamoto, Chem. Commun. 1999, 1703.
- [17] a) M. Yamanaka, A. Nishida, M. Nakagawa, Org. Lett. 2000, 159; b) T. Imamoto, M. Nishiura, Y. Yamanoi, H. Tsuruta, K. Yamaguchi, Chem. Lett. 1996, 875.
- [18] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5<sup>th</sup> edn.; Wiley, New York, 1988, 973.
- [19] M. S. Viciu, E. D. Stevens J. L. Petersen, S. P. Nolan, Organometallics, 2004, 23, 3752.
- [20] Gaussian 03, Revision A1; Gaussian Inc.: Pittsburgh, PA, 2003.
- [21] K. S. Kim, P. Tarakeshwar, J. Y. Lee, Chem. Rev. 2000, 100, 4145, and references cited therein.
- [22] Monograph on vinyl cations: a) Dicoordinated Carbocations, (Eds.: P. J. Stang, Z. Rappoport), Wiley, Chichester, 1997; b) P. J. Stang, Z. Rappoport, M. Hanack, L. R. Subramanian, in: Vinyl Cations, Academic Press, New York, 1979.

- [23] Reviews: a) V. Lucchini, G. Modena, L. Pasquato, in: Dicoordinated Carbocations, (Eds.: P. J. Stang, Z. Rappoport), Wiley, Chichester, 1997, Chap. 6, p 237; b) Z. Rappoport, in: Reactive Intermediates, Vol. 3, (Ed. R. A. Abranovitch), Plenum, New York, 1983, p. 427.
- [24] a) F.-P. Kaufmann, H.-U. Siehl, J. Am. Chem. Soc. 1992, 114, 4937; b) H.-U. Siehl, F.-P. Kaufmann, K. Hori, J. Am. Chem. Soc. 1992, 114, 9343; c) H.-U. Siehl, Pure Appl. Chem. 1995, 67, 769; d) E.-W. Koch, H.-U. Siehl, M. Hanack, Tetrahedron Lett. 1985, 26, 1493; e) H.-U. Siehl, in: Stable Carbocation Chemistry, (Eds: G. K. S. Prakash, P. von R. Schleyer), Wiley, New York, 1997, Chap. 5, p 165.
- [25] Vinyl cationic species **41** could be also generated from diphenylacethylene with 1 equiv. of  $Sc(OTf)_3$  in the presence of  $[NBu_4][SbF_6]$  (5 equivs.).
- [26] Compound **6** in an *E/Z* ratio of 92/8 was prepared using superacidic ionic liquids containing multinuclear fluoroantimonate anions, with [bmim][Sb<sub>n</sub>F<sub>5n+1</sub>] as catalysts; manuscript in preparation.